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Moment expansion ofthe two-particle Green function for the 
Hubbard Hamiltonian 
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Abslraet. The energy m m m t  txpansion of the two-particle Green function for the 
Hubbard Hamiltonian b developed by evaluating lhc mrrerponding mmmutaion W 
calculate eipliciily the Erst tour mu moments nese exau result.. are used to evaluate 
the accuracy of approximate solutions for the two-particle Green function relevant for 
the study of the Auger specIra of transition metals. 

1. Introduction 

The Green function method has been widely used in the study of electron correlations. 
In particular, it has been employed in the case of the Hubbard Hamiltonian 

H = t i j  &aj, + U nitnil nj, = a:&;, (1) 
ij, i 

which is broadly used as a model Hamiltonian for strongly correlated electron systems. 
The character and the properties of elementary excitations are given by the 

spectral weight function linearly related to Green function (GF). These functions 
can be expanded in negative powers of the oomplex energy z for large 1.~1. The 
expansion coefficients are called the energy moments. One possible way to evaluate 
the mlidity of approximative solutions for GF is to mmpare the energy moments 
of the approximate GF with the mct moments. The more energy moments of 
the approximate GF are correct the more reliable the solution 6. The approximate 
solution usually has only the first few moments correct It has been suggested [I] that 
a way of deriving new approximate solutions would be to require that the GF have 
the correct energy moments. 

Let us mention some previous results for the Hubbard Hamiltonian. lb our 
knowledge, the energy moments have been calculated only for the one-particle GF. 
The situation in this case is as follows. The simplest Haruee-Fock solution gives 
only the first two moments correctly. The socaned 'Hubbard I' solution [Z] is correct 
in the first three moments. The solution with four correct moments was derived by 
Bhir-Kheli et a1 [I] with the help of the above mentioned method in the second 
order. 

$ On leave of atsence from Institute of Physics, Czechoslovak Academy of Sciences, Rape, 
Czechoslovakia. 
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In th is  article we calculate the exact moments for the two-particle GF in order to 
evaluate the validity of the approximate solutions for this GF which have been used 
for the explanation of the two-particle spectmscopies (Auger spectra and appearance 
potential spectra) of transition metals. Several solutions have been developed [?- 
91, but only some of them [7,9] are applicable to the case of half-filled band and 
strong interactions. Recently we have developed a new solution [9] based on the 
alloy analogy which removes some drawbaclts of the simple mean-field solution [7]. 
The present calculation of the moments was motivated by a need to check further 
the new solutions. 

In seaion 2 we write the equation of motion for the two-particle GF. In section 3 
we develop the exact moment expansion of the two-particle OF. In section 4 the 
validity of the approximate solutions is discussed. 

2. WO-particle Green function 

We shall use the double-time Zubarev GF [lo] in the same standard notation as 
in previous papers [7,9]: i , j , k , l  are the site indices, CT = f , l  is the spin index, 
the momentum indices are k,Z,p,q. The retarded two-particle GF in energy 
representation for complex energy z is 

(2) t t  
G ; j k r ( z )  = ( (a ip jL la l~ak , ) ) . .  

In the application to the Auger spectroscopy we are interested in its superdiagonal 
element G,(z) = Gjii i (z) .  

The GF G i j k l ( z )  obeys the equation of motion 

K i j k r  = SikSjl- f i j l (attaiT) - &ik(a: la j i )  

r i j d z )  = (((nil + nj t )a i ra j i ia : la i r ) )z  

(4) 

(5) 

and 

is the higher-order GF. Let us note that equation (3) was obtained by using the 
derivative of the double-time GF with respect to the left time variable and then 
transforming to the energy representation. 

3. Exact moments 

The energy moments m, entering the expansion of G,(z) 
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where m is an arbitrary integer 0 < m < k. The operators A, are defined recursively 
by relations 

mk = ;(ck,m f 4.A- (9) 
This Hemitian symmehization allows us to s impl i  some expressions for higher- 
order moments and it corresponds to the well known fact that the moments mk are 
real numbers. 

We have assumed a translationally invariant ground state. In order to simplify 
the calculations, we have further assumed that the hopping integrals tij are real 
and symmetric, llj = t j i ,  and ti; = 0 (centred band). The hopping integrals are 
connected with the dispersion law of the one-electron band by the relation 

P 
The moments are calculated from the equations (7) and (8) in a straightforward 

manner. These calculations for higher-order moments are rather cumbersome, so we 
present here only the first four moments: 

m,,= I - n  (11) 
m l = - E * t U ( l - n )  (12) 
m, = (2-  n)W,- E, - 2UE, f @(I- n) (13) 
m3 = (2- n)W3- - 3W2E, -t 2U(1 f n - p)W2 

- 2 U E Z - 3 U Z E I + U 3 ( l - n ) + U C l -  UC,+2UzC3 (14) 
where n = C,(a~,a;,) is the concentration of electrons, p = (niTni,) ,  and 
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4. Comparison of appmximate solutions 

Recently we have developed two approximate solutions of the hierarchy of equations 
for the GF Gijkl.  Both use the decoupling for the GF r in equation (3). The fist, 
HartreeIjock-like solution m, is based on the approximation 

This solution is applicable to any e!ectmn concentration 0 < n < 2 and to any 
interaction strength U, has the wrrect behaviour with respect to the electron-hole 
transformation and is wrrect in four exactly solvable b i t ing  cases m. However, it is 
not a genuine interpolating solution between the weak and strong interaction regimes 
because it is not correct in the neighbourhood of the atomic limit. 

The second solution [9] improves the previous one in the regime of the strong 
interactions. It was derived using the more complicated alloy analogy decoupliig 

where .zij is a random variable taking three values corresponding to the situations 
in which none, one or two electrons, respectively, occupy the states at sites i and 
j .  In this way we have replaced the electron correlation problem by the pmblem 
of the disordered ternary inhomogeneous alloy which is treated within the coherent 
potential approximation (CPA). We also make a comparison with the approximate 
theory derived by Presilla and Sacchetti [a. This solution also has the correct band 
and atomic limit (in the case of the single band); however, it violates the electron-hole 
symmetry. 

The explicit expression for the superdiagonal element Gg(z) of the two-panicle 
GF within these three approximations can be summarized as follows. 

V Drchal and M k l a  

r i j k l ( z )  = (nii + n j r ) ~ i j k l ( z ) .  (20) 

r i j k l =  E i j G i j k I  (21) 

where t is the renormalized energy and V ( z )  is the renormalized strength of the 
pair interaction. The choice 

yields the result of Presilla and Sacchetti [6], while 

gives the Hartree-Fock-like solution 17. Fmally, the choice 

corresponds to the alloy analogy solution [9]. Here C ( z )  is the selfenergy obtained 
by solving the BA equation 

v = u  E = z  03) 

V = U ( I - n )  ( = z - U n  (24) 

v = U -  E(%) ( = z -  C ( z )  (U) 

U k - C ( z )  2 

C C k  1 - (Uk- C ( z ) ) F ( z )  = O k=O 
where 

1 1 F(r) = -E N 2  k p  z - C ( Z ) - E ( K - ~ ) - E ( P )  

and ck are the concentrations entering the effective alloy problem (for details see 
[9]). The moments are found from the expansion of (22) in negative powers of z for 
large lz [ .  
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The four lowest moments for these approximarive solutions are (the superscripts 
PS, HF, and CPA are self-explanatory) 
m r  = mp = mFA = m, (29 
mp = mm 1 -  - me* 1 = m1 (29) 
mF =mz+UEI  (30) 

my = m ~ A = m z t U ( l - n ) E l  (31) 
mF = p3 + U [ ( 4 -  3n)Wz - Ez] - UzEl (32) 
mF = p3 + U ( 4 -  n - nz)Wz- U(1+ 2n)Ez - Uz(l+ n + nZ)E, (33) 
%eA = p3 + ~ ( 4 -  n - n2)Wz - U ( I  + 2 n) Ez - U2(1 + 2n + 2p)E1. (34) 

. u 3 = ( 2 - n ) W 3 - & - 3 W . E 1 + U 3 ( 1 - n ) .  (35) 

The quantity p3 is a shorthand for the expression 

Hence, all three solutions reproduce only the first two moments exactly. The 
Hartree-Rck-like and the alloy analogy theory yield the same (incorrect) value of 
the third moment. Let us note that it becomes exact for the half-filled band, or for 
the empty band (E, = 0). These two solutions start to have different moments from 
the fourth one. In this case. the moment for the alloy analogy solution contains the 
two-particle correlation function p, which is completely absent in the Hartree-Fbck- 
like solution (and a h  in the solution of Presilla and Sacchetti). It corresponds to an 
improvement of the former solution over the latter in the strong-correlation regime. 
However, the correlation function p appears in different terms than in de exact 
solution. Moreover, the two- and three-site correlation functions are not contained 
in fourth and higher moments for either approximate solution. The third moment 
of Presilla and Sacchetti's solution is correct only in the case of the empty band 
(E, = 0). 

5. Conclusion 

We presented the method of the calculation of the energy moments of the two- 
particle GF for the Hubbard Hamiltonian. We used these exact results to evaluate 
the validity of three approximate solutions obtained by decoupIing in the equations 
of motion for the "0-particle GF. The corresponding moments differ from the exact 
ones already in the third order. In order to get the solution with the correct third 
moment one could try lo follow the method suggested by Bhu-Kheli [I]. It can be 
described as follows. The hierarchy of the equations of motion is terminated at the 
nth level approximating the GF of the ( n  + 1)th order by a linear combination of the 
GFs of the lower order. The coefficients of this combination are determined from the 
condition that GF of the nth order obtained by this decoupiing have the correct first 
n non-hivial momenrs. The work in this direction is m progress. 

The criterion of the number of correct moments is only very rough and a more 
quantitative analysis is desirable. However, it is complicated by the absence of the 
exact results for many-particle correlation functions which enter the higher-order 
moments. Another possibility for getting more information is to analyse the moments 
for individual peals h the spectral weight function instead of the full moments in a 
way similar to the analysis by Harris and Lange [ l l ]  in the case of the one-particle 
GF for the original Hubbard solutions. 
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